Wegner-Houghton equation in low dimensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wegner-Houghton equation in low dimensions

We consider scalar field theories in dimensions lower than four in the context of the Wegner-Houghton renormalization group equations (WHRG). The renormalized trajectory makes a non-perturbative interpolation between the ultraviolet and the infrared scaling regimes. Strong indication is found that in two dimensions and below the models with polynomial interaction are always non-perturbative in ...

متن کامل

Wegner-Houghton equation and derivative expansion

Alfio Bonanno ∗(1,2), Vincenzo Branchina †(3), Herve Mohrbach ‡(4) and Dario Zappalà § (2,5) Istituto di Astronomia, Università di Catania, viale Andrea Doria 6, 95125, Catania, Italy (2) INFN,Sezione di Catania, corso Italia 57, 95129, Catania, Italy Laboratory of Theoretical Physics , University of Strasbourg, 3,rue de l’Universite, 67000, Strasbourg France LPLI-Institut de Physique, F-57070 ...

متن کامل

/ 99 04 09 3 v 1 1 3 A pr 1 99 9 Wegner - Houghton equation in low dimensions

We consider scalar field theories in dimensions lower than four in the context of the Wegner-Houghton renormalization group equations (WHRG). The renormalized trajectory makes a non-perturbative interpolation between the ultraviolet and the infrared scaling regimes. Strong indication is found that in two dimensions and below the models with polynomial interaction are always non-perturbative in ...

متن کامل

Scattering for the Beam Equation in Low Dimensions

In this paper, we prove scattering for the defocusing Beam equation utt + ∆u + mu + λ|u|p−1u = 0 in low dimensions 2 ≤ n ≤ 4 for p > 1 + 8/n. The main difficulty is the absence of a Morawetz-type estimate and of a Galilean transformation in order to be able to control the Momentum vector. We overcome the former by using a strategy of Kenig and Merle [6] derived from concentration-compactness id...

متن کامل

Adaptive Solution of the Master Equation in Low Dimensions

The master equation satisfied by a probability density function is solved on a grid with a cell size h > 1: A modified master equation is derived for the time development of the average of the density in the larger cells. The accuracy of the approximation is studied and the total probability is conserved. Based on an estimate of the discretization error, the cell size is dynamically adapted to ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review D

سال: 2000

ISSN: 0556-2821,1089-4918

DOI: 10.1103/physrevd.61.085018